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proper Z dependence in two electron atoms. The 
absolute difference of the curves in Fig. 1 is not large. 
This much difference might well be expected from the 

I. INTRODUCTION 

THE model of Thomas1 and Fermi2 allows one to 
calculate a density distribution of electrons in an 

atom by assuming that at each point in the atom, the 
electrons constitute a degenerate Fermi gas. The energy 
of the system is written in terms of the density and 
minimized subject to the condition that the number of 
electrons is constant. One is naturally led to ask about 
the utility of this model for describing other properties 
of the atom, for example, the angular momentum. 

One suspects that a straightforward inclusion of angu­
lar momentum in the Thomas-Fermi model will lead to 
unsatisfactory results. For one thing, the assumed 
density in momentum space in this model is symmetric 
with respect to the origin. It thus possesses no net linear 
or angular momentum. For another, the only angular 
momentum in a statistical system compatible with a 
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mand, under Contract No. AF 19 (604) 4555, Project No. 7635, 
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DA-ARO-(D)-31-124-G276, and the Office of Naval Research and 
ARPA under Contract Nonr-285(49), NR 012-109. 
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1 L . H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927). 
2 E. Fermi, Z. Physik 48, 73(1928). 

type of potential and wave function used in this 
calculation where the purpose was to test the Z depend­
ence of a particular type of correlational potential. 

fixed energy is a rigid rotation about a fixed axis. This 
model is at variance both with the assumed density and 
with the known angular momentum distribution in real 
atoms. 

To overcome the first (but not the second) difficulty, 
Sessler and Foley3 were led to displace the distribution 
in momentum space from the origin by a position-de­
pendent amount. This assumption used in the procedure 
similar to the original derivation of the Thomas-Fermi 
model yields a spherical atom spinning rigidly about a 
fixed axis.4 This result may also be derived by spinning 
the nuclear potential in analogy to the nuclear cranking 
model of Inglis.5»6 

A satisfactory approach might be to restrict the 
phase-space density in the statistical model to a fixed 
energy and total value of the angular momentum. This 
is a difficult problem in the conventional formulation of 
the Thomas-Fermi model. Recently, however, Baraff 
and Borowitz7 have derived the Thomas-Fermi model of 
the atom from the many-body Schrodinger equation 

3 A. M. Sessler and H. M. Foley, Phys. Rev. 96, 366 (1954). 
4 See, for example, L. Landau and Ya. Smorodinsky, Lectures 

on Nuclear Theory (Plenum Press, New York, 1959), Chap. 6 for 
an ample discussion of the fact that a spherical quantum mechan­
ical system cannot rotate. 

5 D. Inglis, Phys. Rev. 96, 1059 (1954). 
6 D. Inglis, Phys. Rev. 97, 701 (1955). 
7 G. A. Baraff and S. Borowitz, Phys. Rev. 121, 1704 (1961). 

P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 1A 6 J A N U A R Y 1964 

Model for the Statistical Atom with Nonvanishing Angular Momentum* 

JUDAH L. SCHWARTzf AND SlDNEY BOROWITZ 

Physics Department, New York University, New York, New York 
(Received 4 April 1963) 

In the first of the coupled integro-differential equations satisfied by the Green's functions of the many-
body system the Hartree-Fock approximation is made for the two-particle Green's function. The resulting 
equation is written in a mixed position-angular momentum representation in such a way that use may be 
made of whatever empirical information about the angular momentum of the system is available. In the 
mixed position-angular momentum representation the one-particle Green's function appears as a sum of terms 
each of which corresponds to a different value of the angular momentum. For the principal groups of the 
periodic table in which the angular momentum of the atom is carried by either one, two, or three electrons 
added to or missing from a closed shell the appropriate terms in the expression for the one-particle Green's 
function are identified. The first of the coupled integro-differential equations for the Green's functions is then 
solved to lowest order in h in the manner indicated by Baraff and Borowitz. The result is a modified Thomas-
Fermi model that differs from the previous results of Sessler and Foley for the same problem. The Sessler-
Foley modification of the Thomas-Fermi atom is rederived in the spirit of the cranking model for the nucleus 
by spinning the potential. The present formalism is seen to lead to the Sessler-Foley result in the limit of 
many particles carrying the angular momentum. However, the region of validity of the cranking model 
in the nucleus lies far removed from the magic numbers where there are many nucleons outside a spherical 
core. Thus, the Sessler-Foley result may be interpreted as a kind of cranking model of the atom. In contrast 
to the previous work the present formalism yields a sign change for the quadrupole coupling constant on 
passing through closed shells and calculated values for the quadrupole coupling constant of the halogens 
are seen to be within an order of magnitude of the accepted values. 
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using Green's function techniques. One can modify this 
derivation to restrict the phase-space density allowing 
only specified values of the total angular momentum of 
the system. 

In this derivation one uses the Green's function 
hierarchy equations in the Hartree-Fock approximation. 
In order to describe a statistical atom with angular 
momentum in this method, an appropriate representa­
tion for the Green's functions is introduced. In this 
representation the Green's functions appear as infinite 
sums over all angular momenta of partial Green's 
functions. One can then isolate the significant terms in 
the sums corresponding to the case of a few electrons 
carrying the angular momentum of the system outside a 
spherical core and to the case of the angular momentum 
being distributed among all the electrons in the atom. 
The last mentioned case yields the Sessler-Foley result 
as it should being a completely statistical calculation.8 

Some numerical calculations of quadrupole coupling 
constants are given for comparison with similar calcula­
tions by Sessler and Foley. 

II. SESSLER-FOLEY MODEL 

In their work Sessler and Foley arrive at the con­
clusion that a statistical atom with angular momentum 
rotates as a whole. This result is consistent with a 
theorem proven by Landau and Lifshitz9 that states 
that the only macroscopic motions compatible with an 
equilibrium state of a statistical system are translation 
with a uniform velocity and rotation with uniform 
angular velocity about a fixed axis. 

This result depends on the fact that we have no 
knowledge of the internal distribution of angular mo­
menta ; we know only its total value. One might, there­
fore, anticipate a different result if one knew on empirical 
grounds that the entire angular momentum of the sys­
tem was carried by a single particle. This, then, would 
correspond to a further restriction of the volume in 
phase space available to the microcanonical ensemble. 
We shall indeed find that one is led to different equa­
tions for the density in the system when one inserts 
empirical conditions known to hold. Indeed, even with­
out the inserting of empirical information, a detailed 
treatment allowing for internal degrees of freedom can 
be made leading to different results than those illus­
trated above.10 

8 The problem of the statistical atom with nonzero angular 
momentum was recently treated by P. H. Levine and O. Von Roos, 
Phys. Rev. 125, 207 (1962). Although this approach is similar to 
that of Baraff and Borowitz in many ways, the inclusion of 
angular momentum is done classically and thus their resulting 
equation for the density in zeroth order reduces at zero tempera­
ture to the Sessler-Foley equation. 

9 L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison 
Wesley Publishing Company, Inc., Reading, Massachusetts, 
1958), p. 34. 

10 See H. Grad, Comm. on Pure and Appl. Math. 5, 455 (1952). 
Also H. Grad, J. Phys. Chem. 56, 1039 (1952). Grad has discussed 
the statistical mechanics of dynamical systems with integrals other 
than energy. In particular his approach allows him to take into 

It would therefore seem reasonable to find that the 
statistical atom with only the value of the total angular 
momentum specified should rotate rigidly as indeed was 
found by Sessler and Foley. These workers introduced 
an angular momentum into the Thomas-Fermi atom 
where it is ordinarily absent by displacing the Fermi 
sphere in momentum space from the origin by a posi­
tion-dependent amount D(r). This imparts a net linear 
momentum to each point in the atom and a nonzero 
angular momentum is now possible. 

The resulting equation for the potential energy in the 
atom is 

V2$= (4e2/37r^3)[2m($-iu)+ (Xmr sin0)2]3/2, (II.l) 

where 
Ze2 rn(r')dr' 

$(r) = e2 / . (Il.la) 
r J [ r— rr ( 

The quantity X is the Lagrangian multiplier on the 
condition of constancy of the angular momentum and 
has the dimensions of an angular velocity. 

The quantity /x corresponds to the chemical potential 
and vanishes in the case of the neutral atom. 

The form of the modified Thomas-Fermi equation 
(II.l) indicates that the model describes a rigid sphere 
rotating with constant angular velocity X, and the cor­
rect value of the angular momentum is obtained by a 
suitable adjustment of the value of X. This, however, is a 
classical treatment of the angular momentum. To begin 
with, the total angular momentum is taken equal to the 
z component in the above derivation and further, 
quantum mechanically it is meaningless to speak about 
an angular momentum for a spherically symmetric 
system since the wave function of such a system is 
invariant under rotation.11 

This modification of the Thomas-Fermi model may be 
derived in an alternative fashion that is very much in 
the spirit of the cranking model of the nucleus. This 
model was first introduced by Inglis in an attempt to 
explain the rotational levels that arise from the more or 
less rigid rotation of nuclei. The derivation of the 
cranking model hinges on the notion that the nucleons 
are in a potential well that is externally rotated. We 
shall, therefore, rederive the Sessler-Foley modification 
of the Thomas-Fermi model by leaving the Fermi sphere 
centered at the origin in momentum space, and rotating 
the nuclear potential well instead. 

The kinetic energy of the atom is given by 

/ dr / dp—= / dx . (II.2) 
Oft)3 7 J 2m mWJ IOTT2 

account internal degrees of freedom within the individual members 
of the system. He does not, however, allow for the imposition of 
conditions derived from empirical knowledge of the internal 
structure of the system. 

11 See, for example, G. E. Brown, in Lecture Notes on the Many 
Body Problem, edited by C. Fronsdal (W. A. Benjamin, Inc., New 
York, 1962). 
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Rotating the nuclear potential well will have the 
effect of adding a centrifugal term to the potential 
energy which becomes 

r f e2 r n{x') Ze2 } 
dx\ — / dxf + | m r V \n(x). (II.3) 

J \2 J [ r - r ' l r J 

The energy density E' is related to the energy density 
E of the nonrotating system by 

E'=E+ i<mr2a>2n(r). (II.4) 

We may therefore consider the quantity 

mr2o)n(r) (II.5) 

as an angular momentum density. The integral of this 
density over the volume of the atom is the total angular 
momentum which is to be conserved. 

Introducing the Lagrangian multipliers X and n for 
the conditions of conservation of angular momentum 
and particle number, respectively, we obtain as the ex­
pression to be minimized 

n(x)n{x') Ze2 

dx' n(x) 
I r-r'l r 

(ft2(37r2)5/3 e2 

dx\ [>(r ) ] 5 / 3 +— 
I 107r2m 2 

+^mr2oo2n(r)+\mr2cbn(r)+fjLn(r) \ . (II.6) 

Variation with respect to cb, taking into account the 
fact that only components of GO normal to the polar axis 
contribute to the angular momentum, yields 

co= —X sin0. (II.7) 

Variation with respect to ^(r) in conjunction with 
Poisson's equation yields finally 

V2$= (4e2/3Th%2m(^~-fx)+ (\mr sin0)2]3/2, 

which is seen to be identical with (II. 1). 
We see, therefore, that the external rotation of the 

potential well leads to the same equation for the density 
as that obtained from the displacement of the Fermi 
sphere in momentum space. 

The rotational levels of nuclei so well explained by the 
cranking model do not appear in nuclei in the vicinity of 
the magic numbers. There are, for example, no rota­
tional levels in Pb208 and it is only as one goes away 
from lead toward the heavier nuclei that rotational 
levels arise and the theoretical level spacing is ap­
proached. This is also true in the rare-earth region far 
removed from the magic numbers. We see therefore that 
a model based on the external rotation of a potential 
well has its greatest utility when applied to situations in 
which large numbers of particles lie outside a spherical 
core. We shall see that this is true in the case of the atom 
as well. 

III. MIXED POSITION—ANGULAR MOMENTUM 
REPRESENTATION 

We use the Green's function formalism introduced by 
Schwinger12 for the quantum-mechanical many-particle 
system in the ground state. This description of the 
many-body system is a time-dependent one resembling 
the time-independent description of the many-body 
system employing the set of 1, 2, • • -N particle density 
matrices. In this formalism the i^-particle Green's 
function 

Gu(t\tv ' - TNIN; ti t\ - - - x^'t^') 

is analogous to the Ar-particle density matrix and con­
tains the same information about the system.13 The 
Green's functions also satisfy a hierarchy of equations in 
which the iV-particle Green's function is coupled to the 
(iV+1)-partide and the (TV—1)-particle Green's func­
tions. The procedure to be adopted in what follows is 
that of Baraff and Borowitz in which a suitable repre­
sentation of the one-particle Green's function is ex­
panded in powers of ft. 

The Hamiltonian for an atom having a nucleus of 
infinite mass and charge Ze at the origin surrounded by 
N electrons is given by 

H=Z H0(ti)+i E » ( r . - r y ) , (IILla) 
%9^i 

¥ Ze2 

2m n 

v(ti- r,-) = -
r»—r,-

(III. lb) 

(III.lc) 

The first of the coupled hierarchy of integro-differ-
ential equations involving the one- and two-particle 
Green's functions may be written in the Hartree-Fock 
approximation as a pair of integral equations: 

K(rih; r2h)dr2dt2Gi(r2t2\ ti'ti) 

= ^ ( r 1 - r 1
, ) 5 ( / i - / i / ) , (III.2a) 

where the kernel K{titi\ x2h) is defined by 

K(x1t1;x2t2) 

d =r«— 
L dh 

H0(r1)+2i / d r ' ^ r i - r O G i t r '*;rv-)] 
X 5 ( r i - r 2 ) 5 ( ^ - ^ 2 ) - ^ ( r 1 - r 2 ) 

X & (rih; r2*i+)5(h-12). (III.2b) 

At this point Baraff and Borowitz effect a transforma­
tion to a mixed position-momentum representation. For 

1 2 1. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). 
13 A. Klein and R. Prange, Phys. Rev. 112, 994 (1958); R, 

Prange and A, Klein, ibid. 112, 1008 (1958), 
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the description of an atom with nonvanishing angular 
momentum it will prove useful to choose a more ap­
propriate representation. The importance of the choice 
of representation rests on the fact that the many-body 
problem we have formulated is not solved exactly. If it 
were, then all the properties of the system, including of 
course the angular momentum could be deduced from 
the solution independent of the representation of the 
Green's function. However, one is rarely so fortunate as 
to be dealing with a problem that is soluble exactly. If, 
then, as we have indicated, we wish to take the point of 
view that we are going to specify in our approximate 
solution something of the internal behavior and/or 
structure of the system that we may know from other 
sources, wTe must use a representation that is appro­
priate for the inclusion of such additional information. 
We introduce therefore the mixed position angular 
momentum representation which we have found to be 
most useful for these purposes. 

By analogy to the Fourier transform obtained by 
multiplying the function to be transformed by the solu­
tion to the free-particle wave equation in Cartesian 
coordinates, followed by an appropriate integration, we 
introduce a transform that makes use of the free-
particle solutions in spherical coordinates. The useful­
ness of this procedure is apparent when one remembers 
that a Fourier transform decomposes a spatial descrip­
tion of a particle into plane waves each corresponding to 
a particular linear momentum. The procedure adopted 
here will produce a decomposition into spherical waves 
each one of which carries a particular angular mo­
mentum. 

The single-particle Green's function is to be trans­
formed as follows: 

Xexp[(i<a/ft)(h-h)']dtid(t1--t2), (III.3) 
where 

+Pim(r)= (27r)^(f/hryVW2(^/h)7Ue9<p); (HI.4) 

J1+1/2 are cylindrical Bessel functions, the Yim(d,<p) are 
normalized spherical harmonics, and 

R = i [ r i + r 2 ] (III.5) 

is to be held fixed in evaluating the integral defined by 
the transform. 

The inverse transform is given by 

Gi(ri*i; r2t2) = • E / <? i» (R ,M^i m ( r i ) 
{lirftY i,™ J 

X e x p [ - (ico/ft) (h- t2)2dpdo). (III.6) 

The spatial density of the electrons may be expressed 
in a form that displays the usefulness of the mixed 
position-angular momentum representation for the 

atom with nonzero angular momentum, 

»(R)=-*G1(R*;R*+) 

dp r ap 
C / »im(R,*)#Sim(R), (III.7a) i,m J (lirfij 

/

do) 
G,w (R,#o))—. (III.7b) 

2wft 
Equations (III.7) suggest the following physical in­

terpretation; the quantity nim(R,p) is a density in a 
phase space that is characterized by a momentum 
subspace with one continuous coordinate and two dis­
crete indices indicating the symmetry properties of the 
angular momentum. Physically we shall interpret 
nim(R,p) as giving both the spatial distribution as well 
as the angular momentum distribution of electrons in 
the atom. 

The mixed Fourier-Hankel transform of Eq. (III.2a) 
is taken with respect to ri and t\—t\ keeping 
R = ( r i + r / ) / 2 constant. We obtain 

/ 
K{txh\ rriddtidhGxfak', riti)\ppim(rx) 

ft 
Xexp[(^ / f t ) ( / 1 - / 1

, ) ]^r 1 ^( / 1 -^ 1
/ ) = -^pzw(R). (III.8) 

The quantity $vim{x) may be expanded in plane waves 
as follows14: 

^pim(r) 
P f 

= - / dQpe
{v 

il J 
mYlm$lp). (III.9) 

Inserting (III.8) in (III.9) and interchanging the 
order of integration we obtain 

ft 
-\I/Pim(&) 

7 / dQpYtm(Qp) / K(tih; ^ A ^ f e G i f a f e ; titi) 

r p - r i to) -| 
Xexp i 1— (h- t i ) Wri<2(*1-*i0 

L ft ft J 

P f 
= - / dQ,p 

ilJ 
Fim(o,)r, (III. 10) 

where V is the Fourier transform of the product of K 
and G defined by the above integral. This relationship 
between the Fourier transform fp and the Hankel 

14 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1467. 
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transform tpim is quite general, i.e., 

. J f 
• plm I d\lp 

il J 
Yim(Qp)fv, 

FP=Y,-Yim*(QP)rPln 
l,m p 

( I l l . l l a ) 

(III. l i b ) 

Baraff and Borowitz have shown that the Fourier 
transform f may be expanded in terms of the individual 
transforms K and G by means of a differential operator 
of infinite order which has the structure of an infinite 
series of terms each of which contains an explicit power 
of h. The zeroth-order term is just the product of the 
individual transforms. In this approximation, therefore, 
(III . 10) becomes 

\f/plm(R) 

PC 
= - dttpYlm(Qp)KoGo 

il J 

= - fd^pYlm{%)K\Y.~Y^P)G^A, 
il J LX,M/> J 

(III.12) 

where explicit use has been made of the expansion in 
powers of h given by Baraff and Borowitz for both the 
kernel as well as the one-particle Green's function. The 
zero subscripts on the kernel and the Green's function 
indicate the zeroth-order term in the expansion in h. 

At this point we would like to be able to make some 
statement as to the relative significance of the terms in 
the one-particle Green's function, in light of whatever 
partial knowledge we may have about the system. For 
this purpose we invoke certain statistical arguments. 
We regard the number of electrons as large and con­
struct a microcanonical ensemble to represent the sys­
tem. All possible internal distributions of angular mo­
mentum consistent with the total energy of the atom are 
to be regarded as equally likely. A justification of the 
use of the microcanonical ensemble for the isolated 
quantum mechanical system is discussed in detail in 
Tolman.15 

If our partial knowledge of the system is such that we 
know that the angular momentum of the system is 
carried by a single particle, then it is clear that this can 
occur in only one way and as we shall see, there is an 
unambiguous form of the one-particle Green's function 
that describes this situation. On the other hand, if we 
know the angular momentum of the system is carried 
by many particles, the situation is not as clear. This is 
because there are many possible internal distributions 

15 R. C. Tolman, Principles of Statistical Mechanics (Oxford 
University Press, London, 1938), Chap. 9. 

of angular momentum that will give rise to the same 
total angular momentum. We are, however, dealing 
with an equilibrium state of the atom since we are 
describing the ground state; and therefore, we shall 
adopt the procedure of choosing the most probable 
configuration to represent the system. 

Let us therefore begin by asking what is the most 
probable configuration resulting from the addition of 
many angular momenta, corresponding to the situation 
in which many electrons contribute to the total angular 
momentum. 

Consider the Ni electrons each carrying an angular 
momentum I. The resultant angular momentum of these 
electrons lies between zero and INi. If we consider each 
possible arrangement of these electrons equally proba­
ble, then the resultant angular momentum is shown in 
an Appendix to be a random variable that obeys the 
central limit theorem. The distribution of the resultant 
angular momentum tends, therefore, toward a Gaussian 
distribution centered at zero angular momentum. This, 
however, is true for all I and since the distribution of a 
finite number of random variables each of which has a 
Gaussian distribution is itself Gaussian, we have the 
result that the distribution of resultant angular mo­
mentum is peaked at zero angular momentum. 

In order to estimate how the sharpness of the distri­
bution depends on the number of electrons we note that 
the various possible vector additions of individual angu­
lar momenta are equivalent to the various possible 
trajectories in a random-walk problem. The probability 
distribution of the sum L of a large number N of indi­
vidual random steps of mean square size (P)av

 16 is 

W(L) = 
txv{-D/2N{l%w) 

L2N(PUJ 13/2 

The variance of the distribution is 

(III.13) 

(111.14) 

while the maximum possible angular momentum is 

Lm^Nl(P)&vy\ (111.15) 

We see therefore that the distribution of the resultant 
angular momentum becomes more sharply peaked about 
the origin, i.e., zero angular momentum with increasing 
number of particles since 

<r/LmaiX=N- 1/2 (111.16) 

We therefore, in attempting to describe the situation 
in which many electrons contribute to the angular mo­
mentum consider only the spherically symmetric term 
in (III. 6) and in the sum on the right-hand side of 
(III. 12) corresponding to the most probable single 
configuration of the system. 

16 See, for example, S. Chandrasekhar, Rev. Mod. Phys. 15, 1 
(1943). 
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In that case (III . 12) becomes 

1 * CrOOO 

8 4TT 
fdttpYlm(tip)Ko 

GoooKoim 

where 

Koim(R,po>) 

f Pr2 

I 2m 

l(l+l)¥ 

-:{a>-E(Rypl)} 

2mR2 

*pi*(R) 

: / - ( R -

4rp 

r)n0Qo(Y)dr 

8 

(111.17) 

^pJm(R) 

(111.18) 

^ The zeroth-order density w0oo(R,£) is related to 
Gooo(R,/>co)by 

/

do) 
—^w0+Gooo(R^co) 

and 
r dp 

nooo (R) = / 77-^000 (R,#)^Joo(R). 

2TT 

(2TT)3 

We have therefore, 

Gooo(R,̂ «>) = 

(III. 19a) 

(III.19b) 

frHwp 

a>-E(R,#) 
(111.20) 

to be integrated in the complex 0) plane. For the case at 
hand, i.e., an atom in its ground state the path of inte­
gration lies just below the real co axis from — 00 <a></i, 
crosses the axis at /x and lies just above the real axis 
from fjL<u< 00. The constant ju is the chemical potential. 
The contour is completed by the upper semicircle at 
infinity. The derivation of the contour is discussed fully 
in an appendix to the Baraff and Borowitz paper. 

The result of the integration in the co plane is 

Wooo(R,/>) = 4 T T ^ - 3 , E(R,pl) <fi, 
= 0,- E(R,pl)>fx. 

(111.21) 

The spatial density may be obtained from w0oo(R,^) 
by means of Eq. (III. 19b) which yields 

^000 ( R ) 

where 

*(R) 

--Lf 
67T%3L 

2m(fji—<£) — 
l(l+l)fi2~f/2 

(111.22) 

~Ze2 

R 

R2 J 

fv(R-r)nOQo(r)dr. (111.23) 

Equation (III.22) in conjunction with Poisson's equa­
tion has the structure of the Sessler-Foley modification 
of the Thomas-Fermi model. This is due to the appear­
ance of the centrifugal potential on the right-hand side. 
One may, however, ask why such a term appears since 
the Green's function used in the derivation was taken to 

be spherically symmetric. I t is present because of the 
angular dependence of the transform of the kernel. The 
question remains however, as to what value of / is to be 
used in (111.22). To bring the model into coincidence 
with the Sessler-Foley model we shall choose / such that 

J(J+l)ti2= fl(l+ l)¥n0oo (R)dR, 
• / 

where / ( / + l)h2 is the square of the angular momentum 
of the atom. Thus / has the significance of an average 
angular momentum per particle. 

As pointed out by Sessler and Foley, this model 
corresponds to a spherical electron density executing a 
rigid rotation. The model does not yield any of the 
characteristic properties of the periodic table and the 
essentially classical fashion in which the angular mo­
mentum appears is exhibited by the vanishing of the 
quantum mechanical expectation value of the angular 
momentum. 

In the Hartree-Fock approximation the quantum 
mechanical expectation value of the square of angular 
momentum is given by 

- i f limL2(l)G(HO<Z(l)-
J 1'->1 

(~i)2 

2! 
f lir 

J v-*1* 
lim 2L(1)-L(2) 

,2'->2 

XlG(n,)G(2r)~G(12f)G(21,)']d(l)d(2), (111.24) 

which may be evaluated by the insertion of the form of 
the one-particle Green's function employed in our deri­
vation of the Sessler-Foley result, i.e., 

Gi(ri* ;r2£2) = -- / (?oo(R,#w)^*ob(ri) 
(2TT^)4 J 

Xexp (/1-/2) Updo). (111.25) 

If (111.25) is inserted in (111.24) and the center-of-mass 
coordinate R regarded as a parameter, the expectation 
value of the square of the angular momentum is found 
to vanish because of the zero eigenvalue of the angular 
part of ^poo(ri). 

We see, therefore, that if nothing is known about the 
internal distribution of the angular momentum we are 
led to the Sessler-Foley result as was to be expected on 
the basis of the Landau and Lifshitz theorem quoted 
above. We are, however, in possession of a great deal of 
qualitative information about the internal distribution 
of angular momentum in an atom. We would, therefore, 
be led to expect that if we could include some of this 
information we would be led to a better model. In the 
context of the present formalism, this amounts to 
choosing a more appropriate approximation than 
(j0o(R,po>) for the Fourier-Hankel transform of the one-
particle Green's function. 



A128 j . L. S C H W A R T Z AND S. BOROWITZ 

There is a relatively simple form of the one-particle and 
Green's function that corresponds physically to the case Ltwt iv\ 
of one, two, or three electrons outside a closed shell and 2 ^ > ' 
has the virtue of yielding the proper expectation value ^ 
of the angular momentum. A trivial modification of the — J^ ChhiLM^mm') 
form of this Green's function will be seen to correspond (2irfi)s »».»»' 
physically to electrons missing from a closed shell. 

The one-particle Green's function is taken to be of the vy / „ fJ> uT *>, .,T , A # * / \#* / \ 
r m ^ X G2(KJpLm^]K\p;LmW)\f/lLm(ri)\ptfLm^r2) form 

Gi(rife; rA) = Gi°(rA; rrf2)+GiL(rifa; r * ) , (III.26a) 
(/1-/1O (fe-fe') 

ft ft J 
where Gi° will be seen to describe the behavior of the 
core and G\L that of the valence electrons. The Hankel 
decomposition of the Green's function is given by Xdpdp'doodu'. (III.28c) 

The CLL appearing in (111.28) are Clebsch-Gordan 
Gt»(r*; *** = -£- fG»V,t»)l*»M ^effiSnts^ 

In choosing appropriate normalizations for the two 
r ico "1 terms in (III.28a), we observe that the normalization of 

Xexp ——(h-h) \dpdo) (III.26b) the two-particle Green's function should be 

(~i)2 and / „-\2 

<V<r*; r2;2) = — fGUK,po,)+LM ~T fa11*'' 2 2 W W W W - 1 ) , (111.29) 
(lirfiYJ L J 

[ fa -, corresponding to the number of distinct pairs that one 
(h—t%) \dpdix>. (III.26c) may choose from N objects. We shall therefore choose 

ft J the normalization of the two terms in the two-particle 
Green's function as follows: 

Since the normalization on the one-particle Green's 
function is (~i)2 

' ~ , 22+)<*(l)i(2) 
-i fditih', txh+Wt^Nt (III.27a) ~T~ J G 2 ° ( 1 1 + ; ' 

= %(N-n)(N-n-l) (III.30a) 

a suitable normalization on the quantities just intro­
duced is given by (-—i)2 

-i [Gffah; ri/i+)rfr1=iV-n, (III.27b) 
2 / 

G2
L(11+; 22+)d(l)d(2) = \nin-1). (III.30b) 

This normalization corresponds to the separate anti-

/

symmetrization of the core and the contents of the outer 
GiL(ri/i; ri£i+)dri=n. »=0, 1, 2, 3. (III.27c) shell. The coupling of the core and valence electrons via 

the kernel K is, however, kept intact. 
If we apply (III.24) to the forms of the one- and two-

We likewise assume that the two-particle Green's particle Green's functions chosen here, we obtain 
function may be decomposed into 

G2(11,;22/) = G20(11,;220+G2^(11,;220, (III.28a) -if KmL*(l)[GiO(110+GiL(llO]i(l) 

where (_^2 -

rori i ' .?9^ + / , l i m 2^(1)-L(2) 
G2 {11 , 22 ) 2 J i'->i.2'->2 

« — fG2(R^00co; R^OOcoO^ooW^oofe) X[ f t ' ( l l ' ; 22 ' )+G, ' ( l l ' ; 22')]<*(1)<*(2). (111.31) 
(2wfi)8J : — . 

17 This choice for the two-particle Green's function can be 

[ • t _. understood more readily by considering the two-particle Green's 
_ / . / A // _ A function in a momentum representation. It is then seen that the 

\h-~h ) ~\h~h ) form chosen here corresponds for suitable time ordering to the 
* fl> -1 addition and subsequent removal of two particles each carrying a 

particular angular momentum, subject to the restriction that the 
Xdpdp'duda)' ( I I I .28b) angular momentum of the pair of particles is well denned. 

file:///dpdo
file:///nin-
file:///h-~h
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Substituting (111.26) and (IIL28) in (111.31) and 
remembering that 

we obtain 
L 2 -Z 1

2 -L 2
2 =2L r L 2 , 

L(L+\)W[n-±n(n-l)~]. (111.32) 

We thus obtain a zero angular momentum for the case 
of no electrons outside a spherical core and L{L-\-\)h2 

for the square of the total angular momentum in the case 
of either one or two electrons outside a spherical core. 
In the case of three electrons outside a core, the angular 
momentum is seen to vanish corresponding to the fact 
that the elements of the principal groups in the fifth 
column of the periodic table have three p electrons out­
side a spherical core which combine to give an S state 
for the ground state. 

Having found a form for the Green's functions that 
describes one, two, or three electrons outside a closed 
shell and that yields the proper quantum mechanical 
expectation value of the angular momentum we proceed 
as before to obtain an equation for the electron density. 
Equation (III. 12) becomes 

if-d^pYLm^p)K0[Go°+GoL'] = -—^PLm(R) • (IIL33) 

In this case the L appearing in the Fourier-Hankel 
transform is taken to be the same as that of the term Go. 
As before, we may evaluate the first integral, obtaining 

K0LmG°000 [ C O - E ( R ^ L ) ] 

4irp Awp 

^pLm(R)^ 
X —G°0oo(R^co). (111.34) 

8 

In order to evaluate the second integral, we note the 
relationship between the Fourier transform and the 
Hankel transform, 

5oL(R,^o) = £ -Fx%(Qp)G0V(R^co) 
\n p 

iL 

=-Ytm(np)Ga
L

Lm(R,pu), ( in . i ib) 
P 

where the last step was obtained using the explicit form 
of GiL. Using the expansion of a product of spherical 
harmonics, 

( - ) - (2H- i ) 
= £ - . . . . . ,, Ci)(\,000)Cu(\M, m, -m)Fx„(QP) 
*» [M2/+1)]1/2 

where the Cu are the usual Clebsch-Gordan coefficients, 
and inserting (Ill.llb), (111.35) in (111.33) yields for 
the second integral in the latter equation 

•I dQ,pYLm{Qp)K^L 

tfw(R) 

where 

= G*Lm• - E B L m ^ [»-ET\, (III.36a) 
p XM 8 

£ E(R,p\)BLm*»+PUR) 

E=— . (III.36b) 
E BLm^pXli(R) 
x * 

Thus Eq. (111.33) becomes 

G°ooo(R,po>) Gt-Lm(R,pa) x„ 
iLZBLm^P^(R) 

4*\p\ \P\ ^pLm(R) 

X 
r oo-E i 

La>-£(R,£rd co-

fr 

o>-E(R^L)J a>-E(R,pL) 
(111.37) 

Since Gooo is of the order of N times larger than 
GoLm, we may solve first for the core density in the 
absence of the outer electrons obtaining as in (III.20) 
(the Sessler-Foley model) 

frz4wp 
Gooo°(R,#co) = • (ni.38) 

w-E(R,#Z) 

Since the functional variation of G°ooo(R,po)) for N—n 
particles is the same as for the N in the Sessler-Foley 
model, we may write (111.37) as 

iLE-BiWpx,(R) 
Xju nfi~3 

GOL«(R,AO) — = — — (III.39a) 

and 
**L*(R) N&-E1 

/N—n\ 4npfr3 

Gooo(R,^) = ) . (III.39b) 

Integrating as before over the complex energy plane, 
we obtain 

fft\ &,Lm(R) 
W0Lm(R^) = 47T^-3-(— J 

4 7 r ^ £ i ^ \ W R ) 
XM 

^ZBL^YXM, (HI.35) 
XM 

WoOo(R,/>) = 47T^- 3 (N-n\ 

E<n, (III.40a) 

E(R,pL)<n. (in.40b) 
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The spatial density for the core is obtained by 
integrating over momentum, yielding 

(N-n\ 1 
?%)0 (R) = ( ) 

\ N /6rW 

f L(L+l)fi2}z/2 

X 2 w ( r $ ) (111.41) 

to the same order that yielded (111.22). 
We may obtain a spatial density from (IIL40a) that 

corresponds to what one might expect on physical 
grounds by approximating the series in the denominator 
by the first term. In that case 

^0Lm(R)=( — ) 

R2Lnnl2m(»-$)-L(L+l)W/R2J2^12 

X : . 
2*2(2L+3)ti2L+* 

(111.42) 

I t is seen that in the case of vanishing angular mo­
mentum the present case reduces to the Thomas-Fermi 
model. 

In the event that the atom may be approximately 
described by one, two, or three electrons outside a 
closed core carrying the entire angular momentum, we 
have seen that it is possible to construct a form for the 
one-particle Green's function that in the Hartree-Fock 
approximation leads to the proper quantum mechanical 
expectation value of the angular momentum. The equa­
tions for the spatial electron density that are recovered 
from this form for the Green's function differ from those 
obtained by Sessler and Foley. 

We may treat the cases of one, two, or three electrons 
missing from a closed shell by slightly modifying our 
previous procedure. We let n—^—n in (III.27) and 
(111.30), thereby obtaining for the expectation value of 
the angular momentum in (III.32) 

L ( L + l ) * » [ - » - l » ( » + l ) ] . (111.43) 

Then once again for no electron missing from a 
spherical core we obtain a vanishing angular momentum. 
For the case of either one or two electrons missing from 
a spherical core we obtain the proper angular momentum 
with n—~ 1 and n— - 2 , respectively. In the case of 
three electrons missing from a closed core we return 
once again to column five of the periodic table with a 
ground 5 state. 

IV. QUADRUPOLE COUPLING CONSTANT 

The present model has been derived not in an attempt 
to calculate very accurate detailed atomic properties but 
ratherlto illustrate that a statistical model including 

available information about the internal behavior of the 
system will yield better results. We have therefore 
chosen to compare a calculation based on the present 
model with a similar one done by Sessler and Foley. 

The quantity to be calculated is the quadrupole 
coupling constant 

r 3 c o s 2 0 - l 
g = = _ / ^(R)dR. (IV.l) 

J R* 
In the case of the halogens, we may consider the core 
density to a first approximation to be spherically sym­
metric, the only contribution to the quadrupole coupling 
constant coming from the missing electron. Since the 
sign of the second term in (III. 26a) will differ in the case 
of a single electron missing from a closed shell as com­
pared to a single valence electron, we see that this model 
is capable of accounting for a sign change in the 
quadrupole coupling constant at a closed shell whereas 
the Sessler-Foley model was not. 

Neglecting the centrifugal potential in (111.42) we 
obtain for the case of the halogens 

<3cos20-l)P3 /2 

q 2w2ti2L+*(2L+3)Z 

Xj R2L-l[2m^J2L+^l2dR. (IV.2) 
J Rm'rxi 

The form of the Thomas-Fermi potential is such that 
the integral diverges at the lower limit and must be cut 
off at some appropriate point. In order to arrive at a 
reasonable lower limit for the integration we note that 
the lower limit of the validity of the Thomas-Fermi 
model is a0/Z,18 which is the radius of the first Bohr 
orbit in the field of a nucleus of charge Ze. That very 
little should be lost by cutting off the integral at this 
point can be seen by considering what fraction of the 
charge of an electron in the lowest p state in hydrogen 
lies within a sphere of radius a0- The charge inside a 
sphere of radius a0 in this case is approximately 0.004e 
which is larger than the amount of charge found within 
the first Bohr orbit for higher p states and for higher 
angular momentum states as well. In addition, for 
higher Z this fraction decreases as Z5. 

Using a0/Z as a lower limit, we obtain for the 
quadrupole coupling constants of the halogens 

#ci0o3=— 2.4, 

2Br#o3=— 2 1 , 

qiaoz=— 5 1 . 

These figures are within an order of magnitude of the 

18 See, for example, L. D. Landau and E. M. Lifshitz, Quantum 
Mechanics-Non-Relativistic Theory (Addison-Wesley Publishing 
Company, Inc., Reading, Massachusetts, 1958), p. 238. 
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accepted values19 and the magnitudes increase with in­
creasing Z, as opposed to the Sessler-Foley model where 
q varies as Z~2/3 for all values of the angular momentum. 

The primary difficulty in calculating the quadrupole 
coupling constant in any kind of a Thomas-Fermi model 
is that the density is related to the self-consistent po­
tential and not to the square of a one-electron wave 
function. In the vicinity of the origin the square of the 
one-electron wave function in all but S states is small, in 
contrast to the self-consistent potential which becomes 
increasingly Coulombic in character as one approaches 
the origin. However, it is precisely this region near the 
origin that is weighted most heavily by the quadrupole 
coupling constant. 

V. CONCLUSION 

We have shown that a formalism that allows for the 
insertion of empirical information about the internal 
distribution of angular momentum yields a better sta­
tistical atom than that which would be obtained by re­
quiring only that the system have an angular mo­
mentum. Thus, this model might well serve to yield a 
starting self-consistent potential in a machine Hartree-
Fock calculation. Moreover it is also anticipated that the 
approach used in the present paper may be fruitfully 
utilized in a "Thomas-Fermi"-like model of the nucleus. 

Of greater importance, perhaps, is the fact that the 
notions of the present work may be used in the treat­
ment of any bound fermion system. Thus, empirical 
information of any form about the system may be 
inserted into the formalism by imposing restrictions on 
an appropriate representation of the Green's functions. 

APPENDIX: THE CENTRAL LIMIT THEOREM AS 
APPLIED TO THE ADDITION OF MANY 

ANGULAR MOMENTA 

The various possible values of the resultant angular 
momentum of Ni electrons each carrying an angular 
momentum I are given by the absolute value of the 
algebraic sum of Ni terms each of which may take on the 
21+1 integral values between / and —Z. In order to de­
termine the distribution of the resultant angular mo-

19 N. Ramsey, Molecular Beams (Oxford University Press, 
London, 1956); R. B. Leighton, Principles of Modern Physics (Mc­
Graw-Hill Book Company, Inc., New York, 1959). 

mentum we make use of the central limit theorem which 
states that the sum of n random variables of mean zero 
tends to a Gaussian distribution provided 

(a) the random variables possess absolute moments 
oforder2+5>2 

and 
(b) the quotient 

i—\ n—>oo 

where /z2+s(i) is the (2+5)th moment of the ith variable 
and Bn is the mean square fluctuation of the sum of the 
first n variables, i.e., the mean square fluctuation of the 
quantity £ i=i nki . 

For a fixed / the distribution function is 

1 i 

/(&) = Z) Kk. 

21+1 «—i 

The third absolute moment exists since 

1 • '' 2 rl(f+l)-f 

* 21+1 m=~i 21+li 2 J 

The mean square fluctuation of k{ is 

\£\R>i / a v \R>i /av \^t'/av ? 

i m 

k m—I 21+1 

i m2 

h m=-l 21+1 
Thus <A£i2>av=J/(/+l) and Bn=n(Aki2)&v=lnl(l+l). 
The quotient con therefore becomes 

w
 2 p ( / + 1 ) / 2 ] 7 # \ 

2/+l[/(/+l)/3]3/2wW' 
which goes to zero as n~112 with increasing n. 

Since the distribution of angular momentum satisfies 
the central limit theorem, it tends in the limit of large n 
to a Gaussian distribution, which was to be shown. 


